D Van Kampen's Theorem
let G_{1} and G_{2} be two groups
a word in $G_{1} \cup G_{2}$ is a finite sequence

$$
x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \text { some } n
$$

where each x_{i} is an element in $G_{1} V G_{2}$
define an equivalence relation on the set of words generated by
(1) replace a, b in a sequence with $a \cdot b$ if a, b are in same G_{i} (and the reverse of this)
(2) If $e_{G_{i}}$ is in a sequence remove it (here $e_{G_{i}}$ is the (and the reverse of this) identity in (2)
exercise: Show this is an equivalence rel ${ }^{\underline{n}}$ denote the equivalence class of x by $[x]$
call a word $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ reduced if

$$
\begin{aligned}
& x_{1} \neq e_{G_{i}} \text { (the identity in either group) } \\
& x_{1}, x_{1+1} \text { from different groups }
\end{aligned}
$$

exercise: each equivalence class $[x]$ contains a unique reduce word.
the free product of G_{1} an G_{2} is the group $G_{1} * G_{2}$ of all equivalence classes of words in $G_{1} \cup G_{2}$
multiplication is $\left[x_{1}, \ldots, x_{m}\right] \cdot\left[y_{1}, \ldots y_{n}\right]=\left[x_{1}, \ldots x_{m}, y_{1}, \ldots y_{n}\right]$
and let $e=$ empty word
note: ex=xe $=x \quad \forall x$

$$
x^{-1}=\left(x_{m}^{-1}, \ldots, x_{1}^{-1}\right)
$$

exercise: Check multiplication is associative (induct on length)

Remark: we could define $G_{1} * G_{2}$ to be the collection of reduced words in $G, \cup G_{2}$ with multiplication

$$
\left(x_{1}, \ldots, x_{m}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=\left\{\begin{array}{l}
\text { unique reduced word } \\
\text { in }\left[x_{1}, \ldots, x_{m}, y_{1}, . . y_{n}\right]
\end{array}\right.
$$

Property of free products
let $J_{i}: G_{i} \rightarrow G_{1} * G_{2}$ be the obvious ridusion $1=1,2$ given any homomorphisms $\phi_{2}: G_{1} \rightarrow H$ where H any group I! homomorphism

$$
\phi: G_{1}^{*} * G_{2} \rightarrow H
$$ letters in word)

st $\quad \phi \circ j_{i}=\phi_{i} \quad i=1,2$
Pictorially

exercise: Show property above defines the free product le. if D is any other group satisfying property
then $D \cong G_{1} * G_{2}$
the above property called a universal property
example:

$$
\mathbb{Z}_{n} * \underset{U}{\mathbb{Z}}=\left\{x^{n_{1}} y^{m_{1}} \ldots x^{n_{k}} y^{m_{n}}, x^{n_{1}} y^{m_{1}} \ldots x^{n_{n}}, y^{m_{1}} x^{n_{1}} \ldots x^{n_{n}}, y^{m_{1}} x^{n_{1}} \ldots y^{n_{k}}, e\right\}
$$

$$
\left\{x^{n}\right\}\left\{y^{n}\right\}
$$

complete list of alts $n_{1}, m_{1} \neq 0$
this is called the free group on 2 generators and denoted F_{2} in general the free group on n generators is

$$
\begin{aligned}
F_{n} & =F_{n-1} * \mathbb{Z}=\underbrace{\mathbb{E} * \ldots * \mathbb{Z}}_{n-\text { times }} \quad \text { (also have } F_{\infty}) \\
& =\{\text { all words in } n \text {-letter alphabet }\}
\end{aligned}
$$

note: a homomorphism $f: \mathbb{Z} \rightarrow G$ is uniquely specified by $f(1)$ and for any chocce $g \in G, \exists$! homomorphism sending 1 to g.
From above property we see we get a unique homomorphism
$F_{n} \rightarrow H$ once we specify where the n generators go a group presentation is

$$
\langle x \mid R\rangle
$$

where X is some set and R is a collection of words in the letters X $\iota^{\text {cardinality of } X}$
let $F_{n}=$ free group on n generators where $n=|x|$ so we can think of F_{n} as words in X
$\therefore R$ u a collection of elements in F_{n}
let $\langle R\rangle$ be the smallest normal subgroup of F_{n} containing R the group that $\langle X \mid R\rangle$ repsesents is $F_{n} /\langle R\rangle$
intuitively: $\left\langle x_{1}, \ldots, x_{n} \mid r_{1} \ldots r_{m}\right\rangle$ is the group of all words in x_{i} and $x_{1}{ }^{-1}$ where if you see r_{2} you can remove it (you can also insert if any where)
examples:

1) $\left\langle g \mid g^{n}\right\rangle$ this is all words in g and g^{-1}

$$
\ldots g^{-2}, g^{-1}, e, g, g^{2}, g^{3} \ldots, g^{n}, \ldots
$$

but $g^{n}=e$ so $g^{n+1}=g^{n} g=g$
and $g^{-1}=g^{n} g^{-1}=g^{n-1}$
so every element is of the form $g^{k} \quad 0 \leq k<n$
exercise: $\left\langle g \mid g^{n}\right\rangle \rightarrow \mathbb{E}_{n}<$ integers modulo n
$g^{k} \longmapsto[k]$ is an isomorphism so $\left\langle g, g^{n}\right\rangle$ is a presentation of \mathbb{Z}_{n}
2) a presentation of \mathbb{Z} is $\langle g \mid\rangle$
lemma 15:
every group 6 has a presentation
Proof: given G, let X be a subset of G that generates G let $n=|x|$ (could be ∞)
$\exists!\phi: F_{n} \rightarrow G$
generator to eft X
let $N=\operatorname{ker} \phi \Delta F_{n} \quad$ (normal subgroup)
$1^{\text {st }}$ isomorphism theorem says

$$
G \cong F_{n} / N
$$

let R be elements of N that generate N so $G \cong\langle x \mid R\rangle$
exercises:

1) If $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots r_{m}\right\rangle$, then for any group H and
any $\operatorname{map} \phi:\left\{g_{1}, \ldots g_{n}\right\} \rightarrow H$ satisfying $\phi\left(r_{1}\right)=e_{H}$
\exists ! homomorphism $\Phi: G \rightarrow H$ st. $\Phi\left(g_{2}\right)=\phi\left(g_{i}\right)$
2) $1 f$

$$
\begin{aligned}
& G_{1}=\left\langle g_{1}, \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle \\
& G_{2}=\left\langle u_{1} \ldots u_{k} \mid s_{1}, \ldots s_{l}\right\rangle
\end{aligned}
$$

then $G_{1} * G_{2} \cong\left\langle g_{1}, \ldots g_{n}, h_{1} \ldots h_{k} \mid r_{1} \ldots r_{m}, s_{1} \ldots s_{l}\right\rangle$
given groups G_{1}, G_{2} and K and homomorphisms

$$
\Psi_{1}: K \rightarrow G_{2} \quad 1=1,2
$$

then the free product with amalgamation is

$$
G_{1}^{*} G_{k}=G_{1} * G_{2} /\left\langle\Psi_{1}(k)\left(\Psi_{2}(k)\right)^{-1}\right\rangle_{k \in K}
$$

where $\left\langle\Psi_{1}(h)\left(\Psi_{2}(k)\right)^{-1}\right\rangle_{h \in K}$ is the smallest normal subgroup of $G_{1} * G_{2}$ containing the set $\left\{\Psi_{1}(k)\left(\Psi_{2}(k)\right)^{-1}\right\}_{h \in K}$
the idea here is that we have words in the elts of G_{i} but when you see $\psi_{l}(k)$ in a word you can replace it with $\psi_{2}(k)$
in terms of presentations, if $G_{1}=\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$

$$
\begin{aligned}
& G_{2}=\left\langle g_{1}^{\prime} \ldots g_{n^{\prime}}^{\prime} \mid r_{1}^{\prime} \ldots r_{m^{\prime}}^{\prime}\right\rangle \\
& K=\left\langle h_{1} \ldots h_{k} \mid s_{1} \ldots s_{l}\right\rangle
\end{aligned}
$$

then

$$
G_{1} *_{k} G_{2} \cong\left\langle g_{1} \ldots g_{n}, g_{1}^{\prime} \ldots g_{n^{\prime}}^{\prime}\right| r_{1} \ldots r_{m}, r_{1}^{\prime} \ldots r_{m^{\prime}}^{\prime}, \psi_{1}\left(h_{1}\right)\left(\psi_{2}\left(h_{1}\right)^{-1} \ldots \psi_{1}\left(h_{h}\right)\left(\psi_{2}\left(h_{k}\right)\right)^{-1}\right\rangle
$$

exercises:

1) prove presentation above is correct
2) let $J_{1}: G_{1} \rightarrow G_{1} * G_{2}$ be the natural inclusion maps and $J_{1}: G_{1} \rightarrow G_{1}{ }^{*} k G_{2}$ the induced maps given homomorphisms $\phi_{1}: G_{1} \rightarrow H \quad$ (H any group)
such that $\phi_{1} \circ \Psi_{1}(k)=\phi_{2} \circ \psi_{2}(k) \quad \forall k \in K$
then \exists ! homomorphism $\Phi: G_{1}{ }_{K} G_{2} \rightarrow H$ st. $\Phi \circ J_{2}=\phi_{i}$
Pictorally:

this is the universal propenty for free products with amalgamation

Th ${ }^{m} 16$ (Seifert-Van Kampen):
let X be a path connected space with base point x_{0} suppose $X=A \cup B$ where
A, B and $A \cap B$ are open, path connected sets and

$$
x_{0} \in A \cap B
$$

let $\psi_{A}: \pi_{l}\left(A \cap B, x_{0}\right) \rightarrow \pi_{l}\left(A, x_{0}\right)$ and

$$
\psi_{B}: \pi_{c}\left(A \cap B, x_{0}\right) \rightarrow \pi_{1}\left(B, x_{0}\right)
$$

be the maps induced by inclusion

$$
A \cap B \subset \begin{gathered}
A \\
\subset B
\end{gathered}
$$

Then

$$
\pi_{1}\left(x, x_{0}\right) \cong \pi_{1}\left(A, x_{0}\right) \pi_{1}\left(A \cap B, x_{0}\right) \pi_{1}\left(B, x_{0}\right)
$$

Remark: More generally, if $\left\{A_{\alpha}\right\}$ a collection of path-connected open sets in $X, x_{0} \in A_{\alpha}, A_{\alpha} \cap A_{\beta}, A_{\alpha} \cap A_{\beta} \wedge A_{\gamma}$ path connected $\forall \alpha_{1}, \beta, \gamma$ then $\Phi:{ }_{\alpha}^{*} \pi_{1}\left(A_{\alpha}, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)$ surjetive with ken Φ the smallest normal subgroup N containing $\left.\left(1_{\alpha \beta}\right)_{*}(g)\left(1_{\beta \alpha}\right)_{*}(g)\right)^{-1}$ where $T_{\alpha \beta}: A_{\kappa} \wedge A_{\beta} \rightarrow A_{\alpha}$ is inclusion
we can now compute lots of fundamental groups
example: 1)
let $W_{2}=$ "wedge of two circles" $=s^{\prime} v s^{\prime}$

$$
=ख_{0}^{\text {think of as CW complex }} \begin{aligned}
& \text { or subset of } \mathbb{R}^{2}
\end{aligned}
$$

exerusé: 1) $A \cap B \simeq\left\{x_{0}\right\}$

$$
\text { 2) } A \simeq S^{\prime} \simeq B
$$

and similarly $B=$

so $W_{2}=A \cup B$

$$
\begin{aligned}
& \text { so } \pi_{1}\left(A, x_{0}\right) \cong \underline{z} \cong\left\langle g_{1} 1\right\rangle \\
& \pi_{1}\left(B_{1}, x_{0}\right) \cong \cong \cong g_{2}| \rangle \\
& \pi_{1}\left(A \cap B, r_{0}\right) \cong\{e\}
\end{aligned}
$$

$$
\begin{array}{rl}
\psi_{A}: \pi_{l}\left(A \cap B, x_{0}\right) & \rightarrow \pi_{l}\left(A, X_{0}\right) \\
e & e
\end{array}
$$

50

$$
\begin{aligned}
\pi_{1}\left(W_{2}, x_{0}\right) & \cong \pi_{1}\left(A_{1} x_{0}\right) * \pi_{i}\left(A \wedge s_{s} x_{0}\right) \pi_{l}\left(B, x_{0}\right) \\
& \cong\left\langle g_{1} \mid\right\rangle *\{e\}\left\langle g_{2} \mid\right\rangle
\end{aligned}
$$

$\cong\left\langle g_{1}, g_{2} \mid\right\rangle \cong F_{2}$ the free group on 2 generators
exencuse: 1) if $\left.w_{n}=w_{n-1} \vee s^{\prime}\right\}$ wedge of
then $\pi_{l}\left(w_{n}, x_{0}\right) \cong F_{n}$
2) if X is any connected graph, then $\pi_{1}(x) \cong F_{n}$ for some n
 (we know $T^{2}=s^{\prime} \times s^{\prime}$
so $\pi_{l}\left(T^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$, but we now compute via Van Kumpen)
let $A=$
2) $B \simeq\{\rho t\}$

so $\pi_{1}\left(A_{1} x_{0}\right) \cong\left\langle g_{1}, g_{2} \mid\right\rangle$
$\pi_{1}\left(B, x_{0}\right)=\{e\}$
$\pi_{1}\left(A \cap B, x_{0}\right)=\langle h \mid\rangle$
note: $\Psi_{B}: \pi_{i}\left(A \cap B, x_{0}\right) \rightarrow \pi_{i}\left(B, x_{0}\right)$ trivial map
what about Ψ_{A} ?
Claim $\psi_{A}(h)=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$

$$
h \sim g_{1} * g_{2} * \bar{g}_{1} * \bar{g}_{2}
$$

$$
\text { so } \begin{aligned}
\pi_{1}\left(\tau_{1}^{2} x_{0}\right) & \cong \pi_{1}\left(A, x_{0}\right) \pi_{1}\left(A \cap B, x_{0}\right) \\
& \cong\left\langleg _ { 1 } \left(B, g_{2}| \rangle *\langle h 1\rangle\right.\right. \\
& \cong\left\langle x_{0}\right\} \\
& \cong g_{1}, g_{2}\left|g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z} \\
& \begin{array}{l}
\text { exercise }
\end{array}
\end{aligned}
$$

exeruse: 1) if Σ_{n} is the surface of genus ${ }_{n}$

$$
\Leftrightarrow \infty \ldots-\infty \text { - } \cong \text {-yon w/identifications }
$$

then $\pi_{1}\left(\Sigma_{g}, x_{0}\right)=\left\langle g_{1}, g_{2} \ldots g_{2 n} \mid \prod_{i=1}^{n}\left[g_{22-1}, g_{2 i},\right]\right\rangle$
where $[h, k]=h k h^{-1} k^{-1}$
"commentator"
2) this us non abelian for $n>1$
(quotient out even g_{1} 's)
3) $\Sigma_{n} \cong \Sigma_{m} \Leftrightarrow \Sigma_{n} \simeq \Sigma_{m} \Leftrightarrow n=m$

Th ${ }^{\text {m }} 17:$
let X be path connected
$f: \partial D^{n} \rightarrow X$ be continuous $x_{0} \in \partial D^{n}$
Set $Y=X u_{f} D^{2}=\left(X \Perp D^{2}\right) /_{x \in \partial D^{2} \sim f(x) \in X}$
Then

$$
\pi_{l}\left(Y_{1}, x_{0}\right) \cong\left\{\begin{array}{lll}
\pi_{1}\left(x, f\left(x_{0}\right)\right) * \Downarrow & n=1 & * \\
\pi_{1}\left(x_{1} f\left(x_{0}\right)\right) /\langle r\rangle & n=2 & r=f_{*}(g) \text { and } g \text { generates } \\
\pi_{1}\left(\partial D_{1}^{2}, x_{0}\right) \\
\pi_{1}\left(x, f\left(x_{0}\right)\right) & n \geq 3 &
\end{array}\right.
$$

$*$ need X to have a point $x_{0} \in X$ with open n hd $U \simeq\left\{x_{0}\right\}$
Remarks: 1) So attaching 1 -cell adds generator to π (usually)
" " 2 -cell adds a relation to π
" "n n 3 -cell doesn't change π
2) This allows us to compute π_{1} of any CW complex!
$\therefore \pi_{1}$ of any manifold and many other spaces

Proof: $n=2$:

let $A=X \cup_{f} \underbrace{S^{\prime} \times(0,1]}_{D^{2}-\{0\}} \simeq X$
$B=$ interior of $D^{2} \simeq\{p+\}$
$A \cap B=\left(\operatorname{lnt} D^{2}\right)-\{0\} \simeq s^{\prime}$ let $y_{0} \in A \cap B$ that goes to

$$
\begin{aligned}
& \psi_{A}: \underset{s i l}{ } \underset{\langle i l}{ }\left(A \cap B, y_{0}\right) \longrightarrow \underset{s i l}{ } \pi_{1}\left(A, y_{0}\right) \\
& \psi_{B}(g)=e
\end{aligned}
$$ $f\left(x_{0}\right) \in X$ under def. Retraction $A \simeq x$

so $\pi_{l}\left(Y_{1}, x_{0}\right) \cong \pi_{l}\left(x, f\left(x_{0}\right) *_{\mathbb{z}}\{e\} \cong \pi_{l}\left(x, f\left(x_{0}\right)\right) /\left\langle f_{*}(g)\right\rangle\right.$
exercise: Work out cases $n \neq 2$
Why do you need \otimes for $n=1$?
Cor 18:
let G be any group with finite presentation then \exists a topological space X sf. $\pi_{1}\left(x, x_{0}\right) \cong G$

Proof: let $G \cong\left\langle g_{1}, \ldots, g_{n} \mid r_{1} \ldots r_{m}\right\rangle$
let $W_{n}=$ wedge of n circles

$$
\pi_{1}\left(w_{n}, x_{0}\right) \cong\left\langle g_{1}, \ldots, g_{n} \mid\right\rangle
$$

for each r_{i} let $f_{i}: \partial D^{2} \rightarrow W_{n}$ be a continuous map

$$
\begin{aligned}
& \text { st. }\left(f_{i}\right)_{*}(1)=r_{i} \\
& \tau_{\text {gen of }} \mathbb{Z}
\end{aligned}=\pi_{l}\left(s^{\prime}\right)
$$

exercise: Why do we know such an f_{1} exists?

$$
\begin{aligned}
& \text { let } X=W_{n} v_{f_{1}}\left(\frac{\prod}{1=1} D^{2}\right) \\
& \pi_{1}\left(x, x_{0}\right) \cong G \text { by } T_{n}^{m} 17
\end{aligned}
$$

(what is

Proof of Selfert-VanKampen Th ${ }^{m}$ 16:
let $\phi_{A}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)$
$\phi_{B}: \pi_{1}\left(B, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)$ be the homomorphisms induced by inclusions ${ }_{B}^{A} \subset X$
let

$$
\Phi: \pi_{1}\left(A, x_{0}\right) * \pi_{l}\left(B, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)
$$

be the homomorphism induced on the free product

$$
\text { ie. } \Phi\left(\left[r_{1}\right]\left[\eta_{1}\right] \ldots\left[\gamma_{n}\right]\left[\eta_{n}\right]\right)=\phi_{A}\left(\left[r_{1}\right]\right) \cdot \phi_{B}\left(\left[\eta_{1},\right]\right) \cdots \phi_{B}\left(\left[\eta_{n}\right]\right)
$$

note: if $[\gamma] \in \pi_{1}\left(A \cap B, x_{2}\right)$
then $\phi_{A} \circ \psi_{A}([\gamma])=[\gamma]=\phi_{B} \circ \psi_{B}([\gamma])$
as loops
so $\Phi\left(\psi_{A}([r])\left(\psi_{B}([r])\right)^{-1}\right)=[\gamma] \cdot[\gamma]^{-1}=e$

so $K=\left\langle\psi_{A}([r])\left(\psi_{B}([r])\right)^{-1}\right\rangle_{[r] \in \pi_{1}\left(A \cap B, x_{0}\right)} c \operatorname{ker} \Phi$
$\therefore \Phi$ induces a homomorphism, still denoted Φ,

$$
\Phi: \pi_{l}\left(A, x_{0}\right) * \pi_{l}\left(A \cap B, x_{0} \pi_{l}\left(B, x_{0}\right) \rightarrow \pi_{l}\left(x_{1} x_{0}\right)\right.
$$

lemma 9 say Φ is surjecitive!
Claimi: Φ infective
suppose $\left[r_{1}\right] \in \pi_{1}\left(A, x_{0}\right),[\eta] \in \pi_{1}\left(B, x_{0}\right)$

$$
\text { and } \Phi\left(\left[\gamma_{1}\right]\left[\eta_{1}\right] \ldots\left[\eta_{n}\right]\right)=\left[\gamma_{1} \times \eta_{1} \ldots \times \eta_{n}\right]=e
$$

We need to show we can get from the word

$$
\left[\gamma_{1}\right],\left[\eta_{1}\right], \cdots,\left[\eta_{n}\right]
$$

to the empty word by a sequence of doesn't change (1) replace a, b by $a \cdot b$ if a, b in same group word in $\left.\pi_{l}(A) \times \pi_{l}(B)\right\}$ (and reverse of this)
doesn't change $\pi_{1}(B)\left\{(2)\right.$ if we see $\Psi_{A}(k)$ then replace it with $\psi_{B}(k)$ (and the converse of this)
to this end $*$ says we have a homotopy

as in proof of lemma $12(6)$ can use Lebesque number lemma to find n st. squares of side length $\frac{1}{n}$ are mapped by H into A or B (can assume \# of $\gamma_{1} \eta_{1}$ dudes n)
exercosé: Can assume $H\left(\frac{1}{n}, \frac{1}{n}\right)=x_{0}$
(change H and $r_{1,} \eta_{1}$.
but by homotopy hivit: in A or B, respectively)

on radial lines of disk use path γ x_{0} to origuial $H\left(\frac{1}{n}, \frac{j}{n}\right)$

look at bottom row
each $a_{i} \subset A$ or B
egg.

$\delta_{1} \subset A$ or B in $A \cap B$ if adjacent squares not both in some A or B
note:

$$
\left.\begin{array}{l}
\gamma_{1} \times \eta_{1}^{\prime} \sim \gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3} \times \bar{\delta}_{3} \text { in } G \\
\gamma_{1} * \eta_{1}^{\prime} \times \delta_{3} \sim a_{1} \times a_{2} * a_{3} \quad \text { in } G \\
\bar{\delta}_{3} \times \eta_{1}^{\prime \prime} \sim a_{4}
\end{array}\right\}
$$

$$
H=\pi_{1}\left(B, x_{0}\right)
$$

so we can go from

$$
G=\pi_{t}\left(A, x_{0}\right)
$$

one line $\left[0_{1} 1\right] \times\left\{\frac{1}{n}\right\}$ to next by "amalgamation relations"

$$
\begin{aligned}
& {\left[\gamma_{1}\right]_{1}^{G}\left[\eta_{1}\right]^{H}=\left[\gamma_{1}\right]_{1}^{6}\left(\left[\eta_{1}^{\prime}\right] \cdot\left[\eta_{1}^{\prime \prime}\right]\right)^{H}} \\
& \stackrel{(1)}{=}\left[\gamma_{1}\right]_{1}^{G}\left[\eta_{1}^{\prime}\right]^{H}\left[\eta_{1}^{\prime \prime}\right]^{H} \\
& { }^{(2)}\left[\gamma_{1}\right]_{1}^{6}\left[\eta_{1}^{\prime}\right]_{1}^{6}\left[\eta_{1}^{\prime \prime}\right]^{H} \\
& \stackrel{(1)}{=}\left(\left[r_{1}\right] \cdot\left[\eta_{1}^{\prime}\right]\right)_{,}^{6}\left[\eta_{1}^{\prime \prime}\right]^{H} \\
& =\left[\gamma_{1} \times \eta_{1}{ }^{\prime} \times \delta_{3}^{*} \bar{\delta}_{3}\right]^{6},\left[\eta_{1}{ }_{1}\right]^{H} \\
& =\left(\left[\gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3}\right] \cdot\left[\delta_{3}\right]\right)_{1}^{6}\left[\eta_{1}{ }^{\prime \prime}\right]^{H} \\
& \left.\stackrel{(1)}{=}\left[\gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3}\right]^{6}\left[\bar{\delta}_{3}\right]_{1}^{G},\left[\eta_{1}\right]^{\prime \prime}\right]^{H} \\
& \stackrel{(2)}{=}\left[\gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3}\right]_{1}^{C}\left[\bar{\delta}_{3}\right]_{1}^{H},\left[\eta_{1}{ }^{\prime \prime}\right]^{H} \\
& \stackrel{(1)}{=}\left[\gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3}\right]_{1}^{6}\left(\left[\delta_{3}\right] \cdot\left[\eta_{1}^{\prime "}\right]\right)^{H} \\
& =\left[\gamma_{1} \times \eta_{1}^{\prime} \times \delta_{3}\right]^{6},\left[\bar{\delta}_{3} \times \eta_{1}, \cdots\right]^{H} \\
& =\left[a_{1} \times a_{2} \times a_{3}\right]_{1}^{b}\left[a_{4}\right]^{H}
\end{aligned}
$$

The "formal proof" (maybe don't do in class)
we show how to go from the word defined by $[0,1] \times\left\{\frac{1}{n}\right\}$ to the one given by $[0,1] \times\left\{\frac{2 t 1}{n}\right\}$ using (1) and (2) inductively we have a sequence of n elements $\left[a_{1}\right] \ldots\left[a_{n}\right]$
where $\left.a_{j}=\left.H\right|_{\left[\frac{1}{n}, \frac{4}{n}\right]}\right] \times\left\{\frac{1}{n}\right\}$
each $[a,] \in G=\pi_{1}\left(A, x_{0}\right)$ or $H=\pi_{1}\left(B, x_{0}\right)$
(when $1=0$, need to use (1) to break γ_{1}, η_{2} into smaller loops)

Step 1: Use (2) to arrange each $[a$,$] is in G$ or H according to whether the "square above" a, is in A or B, respectively
Step: if at $\frac{J}{n}$ the "squares" change from being in A to being in B (or vice versa)
then add $\delta_{j}=H_{\left\{\frac{1}{n}\right\} \times\left[\frac{1}{n}, \frac{1}{n}\right]}$ and $\bar{\delta}$ to $\left[a_{j-1}\right]$
zee. $\left[a_{j-1}\right]=\left[a_{j-1} * \delta_{j} * \bar{\delta}_{j}\right]$
Step 3: $\left[a_{j-1} * \delta_{j} * \bar{\delta}_{j}\right]_{(1)}^{G},\left[a_{j}\right]^{H}=\left[a_{j-1} * \delta,\right]^{6},\left[\bar{\delta}_{j}\right]_{,}^{6},[a,]^{H}$

$$
=\left[a_{j-1} * \delta_{j}\right]^{G},\left[\bar{\delta}_{j}\right]_{,}^{H}\left[a_{j}\right]_{(1)}^{H}=\left[a_{j-1} * \delta_{ر}\right]^{G},\left[\bar{\delta}_{j} * a_{j}\right]^{H}
$$

Step 4: Use (1) to combine loops in same G or H (ie make reduced word) and note each letter in reduced word is also represented by a product of paths $\left.a_{j}^{\prime}=H_{\left[\frac{j}{n},\right.}, \frac{1+1}{n}\right] \times\left\{\frac{\{+1}{n}\right\} \quad$ (via homotopy H)
Step 5: Use (1) to breack this word into $\left[a_{1}^{\prime}\right], \ldots,\left[a_{n}^{\prime}\right]$

